High sensitivity to chronically elevated CO2 levels in a eurybathic marine sipunculid.

نویسندگان

  • M Langenbuch
  • H O Pörtner
چکیده

CO2 levels are expected to rise (a) in surface waters of the oceans as atmospheric accumulation continues or (b) in the deep sea, once industrial CO2 dumping is implemented. These scenarios suggest that CO2 will become a general stress factor in aquatic environments. The mechanisms of sensitivity to CO2 as well as adaptation capacity of marine animals are insufficiently understood. Here, we present data obtained in Sipunculus nudus, a sediment-dwelling marine worm that is able to undergo drastic metabolic depression to survive regular exposure to elevated CO2 levels within its natural habitat. We investigated animal survival and the proximate biochemical body composition during long-term CO2 exposure. Results indicate an unexpected and pronounced sensitivity characterized by the delayed onset of enhanced mortality at CO2 levels within the natural range of concentrations. Therefore, the present study contrasts the previously assumed high-CO2 tolerance of animals adapted to temporary hypercapnia. As a consequence, we expect future loss of species and, thereby, detrimental effects on marine benthic ecosystems with as yet poorly defined critical thresholds of long-term tolerance to CO2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-Lethal Effects of Elevated Concentration of CO2 on Planktonic Copepods and Sea Urchins

Data concerning the effects of high CO2 concentrations on marine organisms are essential for both predicting future impacts of the increasing atmospheric CO2 concentration and assessing the effects of deep-sea CO2 sequestration. Here we review our recent studies evaluating the effects of elevated CO2 concentrations in seawater on the mortality and egg production of the marine planktonic copepod...

متن کامل

Changes to Intestinal Transport Physiology and Carbonate Production at Various CO2 Levels in a Marine Teleost, the Gulf Toadfish (Opsanus beta).

Most marine teleosts defend blood pH during high CO2 exposure by sustaining elevated levels of HCO3(-) in body fluids. In contrast to the gill, where measures are taken to achieve net base retention, elevated CO2 leads to base loss in the intestine of marine teleosts studied to date. This loss is thought to occur through transport pathways previously demonstrated to be involved with routine osm...

متن کامل

Energy metabolism and cellular homeostasis trade-offs provide the basis for a new type of sensitivity to ocean acidification in a marine polychaete at a high-CO2 vent: adenylate and phosphagen energy pools versus carbonic anhydrase.

Species distributions and ecology can often be explained by their physiological sensitivity to environmental conditions. Whilst we have a relatively good understanding of how these are shaped by temperature, for other emerging drivers, such as PCO2  we know relatively little. The marine polychaete Sabella spallanzanii increases its metabolic rate when exposed to high PCO2  conditions and remain...

متن کامل

Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels.

Ocean acidification poses a range of threats to marine invertebrates; however, the potential effects of rising carbon dioxide (CO2) on marine invertebrate behaviour are largely unknown. Marine gastropod conch snails have a modified foot and operculum allowing them to leap backwards rapidly when faced with a predator, such as a venomous cone shell. Here, we show that projected near-future seawat...

متن کامل

Effects of CO2 on Growth Rate, C:N:P, and Fatty Acid Composition of Seven Marine Phytoplankton Species

Carbon dioxide (CO2) is the primary substrate for photosynthesis by the phytoplankton that form the base of the marine food web and mediate biogeochemical cycling of C and nutrient elements. Specific growth rate and elemental composition (C:N:P) were characterized for 7 cosmopolitan coastal and oceanic phytoplankton species (5 diatoms and 2 chlorophytes) using low density, nutrient-replete, sem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Aquatic toxicology

دوره 70 1  شماره 

صفحات  -

تاریخ انتشار 2004